An online resource based on the award-winning nature guide


Goldenrod Bunch Gall

goldenrod bunch gall 144Galls are abnormal plant growths that are caused by a number of agents, including insects. Each gall-making insect has a specific host plant and location (leaf, stem, bud) on which it lays its eggs in the spring, during the growing season. The egg-laying and/or hatching and chewing of the larva causes the plant to react by forming a growth around the insect. Galls of different species of insects vary in their shape and the gall maker can often be identified as a result of this.

Goldenrods are host to about 50 species of gall-making insects, two-thirds of which are midges, or tiny flies. Goldenrod Bunch Galls, also called Rosette Galls, are the result of an egg being laid in the topmost leaf bud of Canada Goldenrod, Solidago canadensis by a midge in the genus Rhopalomyia, often Rhopalomyia solidaginis. The stem of the goldenrod stops growing, but the leaves don’t. The resulting rosette of leaves provides shelter and food for the midge larva, as well as a host of other insects, including other midges. Adult Goldenrod Bunch Gall midges emerge from the galls in the fall, and females lay eggs in the soil. The larvae hatch within one to two weeks and spend the winter underground, emerging in the spring to start the cycle all over again. Interestingly, Rhopalomyia solidaginis lays all male or all female eggs, one or the other.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Second Brood of Woolly Bears Hatches

8-18-14  woolly bear 093Typically we start seeing Woolly Bear caterpillars in October, when they are searching for sheltered spots in which to spend the winter as larvae. With only two months between now and then, it came as a surprise when my great nephew and budding naturalist Eli Holland discovered a very young Woolly Bear recently. It turns out that in New England, there are two broods of Isabella Tiger Moths (whose larval stage is the Woolly Bear). The caterpillars that hibernated last winter emerged from hibernation this past spring, pupated, transformed into adult Isabella Tiger Moths, and proceeded to mate and lay eggs. It is these eggs that have recently hatched, and the Woolly Bear caterpillars that are no bigger than the length of your baby fingernail right now will be eating dandelions, grasses, nettle and meadowsweet nonstop for the next two months in order to survive the coming winter.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Antlions Trapping Insects

8-14-14  antlions - 230The larvae of a predaceous group of winged insects (family Myrmeleontidae) that closely resemble dragonflies and damselflies are referred to as “antlions” – they have the ferociousness of a lion and prey mainly on ants. The manner in which an antlion traps its prey is ingenious. It excavates a conical pit in sandy soil (an antlion is also called a “doodlebug” because of the squiggly trails it leaves in the sand looking for just the right spot for a pit). Using its head as a shovel, it tosses out sand as it turns in a circle, digging deeper and deeper, until it forms a pit roughly two inches deep and three inches wide. The antlion lies at the bottom of the pit, covered by a thin layer of sand except for it pincer-like mandibles, which are ready to snatch prey at a second’s notice.

The slope of the sides of the pit is at the angle of repose – as steep as it can be without giving way – so when an ant accidentally steps over the edge of the pit and falls in, the sand beneath it collapses, carrying the ant to the bottom of the pit and into the pincers of the waiting antlion. If the ant tries to scramble up and out of the pit, the antlion tosses a load of sand at the ant, knocking it back down. The antlion then injects venom and digestive fluids into the prey via grooves in its mandibles, and drinks the innards of the ant through these same grooves.

The antlion’s anatomy is as unusual as its method of capturing prey. It has a mouth cavity, but no mouth opening, and no external opening for solid waste. Because digestion takes place outside of its body, the antlion doesn’t accumulate a lot of waste, but what it does accumulate stays inside of it until the antlion matures into an adult. This can be anywhere from one to three years, depending on the species. When fully developed, the antlion constructs a small, round pupal case out of silk and sand, in which it overwinters. It emerges from this case the following spring as a winged adult. (Thanks to Joan Waltermire and John Douglas for photo op.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Tortoise Beetle Larvae Making Fecal Shields

8-1-14  tortoise beetle larva with fecal shield 049Instead of discarding feces, or frass, some insects save their waste matter for defensive purposes such as “fecal shields.” These are coverings over the back of the larvae that are made largely of feces and provide either physical or chemical barriers to predation. Adult Tortoise Beetles have a type of shield (hence, their name), but it is formed from expanded, hardened forewings, and is not a fecal shield. The larvae of these beetles have fecal shields which serve as chemical deterrents, preventing most predators from even touching them. The deterrent in the feces comes from the beetles’ food source — plants in the order Solanales. Tortoise Beetle larvae have what is known as a “fecal fork” on their last abdominal segment, which they hold over their body. The larvae maneuvers its muscular, telescopic anus, or “anal turret” in such a manner as to excrete its feces and bits of shed exoskeleton onto the fecal fork, forming an umbrella-like fecal shield.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Caterpillars Molting

6-25-14 caterpillar molting 044A caterpillar is the larval stage of a moth or butterfly. It is the only stage that has chewing mouthparts, and therefore a caterpillar spends most of its waking hours eating. This consumption of food results in massive growth, making its skin/exoskeleton very tight. When this happens, a hormone called ecdysone is produced, prompting the caterpillar to molt, losing its old exoskeleton (to left of caterpillar in photo) under which is a new and larger exoskeleton. After the molt, while the new exoskeleton is still soft, the caterpillar swallows a lot of air, which expands its body. Then, when the exoskeleton hardens, it lets the air out and has room for growth. Caterpillars molt four or five times as they grow. Each different caterpillar stage is called an instar. (Photo: Forest Tent Caterpillar)

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Fern Balls

fern ball 216At this time of year, many new sterile fern fronds have “fern balls” at their tips – something has taken the last few inches of the tip of the frond and stitched it together into a ball-shaped shelter bound with silk. If you open one of these balls, you may find frass – droppings from the immature insect that was dwelling within the ball while consuming the terminal leaflets of the fern. Sometimes, but not always, you’ll find the larva responsible for the frass. Many species of ferns, as well as other plants, are host to many species of larvae, and many of these larvae are immature moths. Pictured is Christmas Fern, Polystichum acrostichoides, which is likely the host of the larva of Herpetograma sphingealis, the Serpentine Webworm Moth, or its close relative, H. aeglealis. Larvae live in these shelters for about a month before pupating and emerging as small, brown moths.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Dragonfly Eclosure: A Vulnerable Time

newt eating dragonfly2 021Dragonfly larvae reside in ponds until the time comes for them to climb up stalks of emergent vegetation or adjacent rocks, split their larval skin and emerge as adults (a process called eclosure). Before it can take flight, a dragonfly has to cling to the substrate long enough to expand its wings by pumping fluid into them, and dry its exoskeleton as well as its wings. During this time the dragonfly is extremely vulnerable – not only can it not fly, but it is usually situated directly above the water. The slightest breeze can blow it from its precarious perch into the water below, where opportunistic predators such as this Eastern Newt are at the ready and make quick work of their helpless prey.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Eastern Tent Caterpillars Hatching & Building Tents

eastern tent cat. FINAL 090The adult Eastern Tent Caterpillar moth lays her eggs in late spring or early summer on a tree whose leaves its larvae will eat (black cherry and apple trees are favorites). Two to three hundred eggs are deposited in a mass that encircles a thin branch. Within three weeks fully formed caterpillars develop inside the eggs. The caterpillars remain there until the following spring, when they chew their way out of the eggs just as the buds of the host tree are starting to open. As soon as the caterpillars emerge, they construct a silk tent within which they reside, enlarging it as they grow in size.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Cecropia Moths Pupating

11-11-13 cecropia cocoon dissected  056Our largest North American native moth, the Cecropia Moth, Hyalophora cecropia, spends the winter as a pupa inside a cleverly-crafted 3” – 4”-long shelter, or cocoon, which it creates and attaches lengthwise to a branch while still in its larval stage. The Cecropia caterpillar, with the silk glands located near its mouthparts, spins not one, but two silk cases, one inside the other. In between the two cases, it spins many loose strands of very soft silk, presumably to enhance the insulating properties of the cocoon. Inside the inner case, the caterpillar splits its skin and transforms into a pupa. Come spring, an adult moth will emerge from the pupal case and exit the cocoon through one end which was intentionally spun more loosely, allowing the moth to crawl out the somewhat flexible tip. (Note: dissected cocoon was not viable.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Bruce Spanworms Emerging & Mating

11-7-13 winter moth IMG_4880I try not to repeat post topics, but in the past two days the sudden emergence of inch-long, tan moths in the woods has been so dramatic that I couldn’t not mention them. These ghost-like, light tan moths are referred to by entomologists as Bruce Spanworm moths, Operophtera bruceata, named after an entomologist by the name of Mr. Bruce. They are often called Winter Moths, due to the fact that they are one of the latest moths to be seen flying, as well as Hunter Moths, as they share the woods with hunters at this time of year. From October to December Bruce Spanworm moths emerge, mate and lay eggs. While this timing is unusual, it makes sense when you think about it — many birds, their primary predators, have left for their wintering grounds. All the moths you see in the air are males — females are wingless and cannot fly. The females crawl up the trunk or branch of a tree and send out pheromones to attract winged males. After mating, the female lays eggs which hatch in the spring, and the larvae feed on a wide variety of deciduous leaves, favoring Trembling Aspens, Sugar Maples, American Beeches and willows. Periodic outbreaks of these caterpillars can result in heavy defoliation.

NB: “This is easily confused with Operophtera brumata – Winter Moth, which is an introduced species from Europe and an abundant pest in the Northeast. Also easily confused with Autumnal Moth (Epirrita autumnata).” Kent McFarland

Ribbed Pine Borer’s Winter Pupal Chamber

11-6-13  ribbed pine borer winter shelter 132The larva of the Ribbed Pine Borer, Rhagium inquisitor, (a beetle) lives just under the inside of a pine tree’s bark. It is a long-horned beetle, and in the fall, when it’s ready to pupate, it creates an oval cell by chewing a relatively flat chamber approximately 1 ¼” long. The Ribbed Pine Borer uses the woody fibers it chewed to form a raised “wall” surrounding the chamber. It then pupates inside the wall, and overwinters in the chamber as an adult beetle, emerging to mate in the spring. (Thanks to Kitty Stanley for photo op.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Willow Beaked-Gall Midge

10-30-13 willow beaked-gall midge   047Now that most of the leaves have fallen, it’s a good time to look for galls that form on woody plants. Willows are host to a great number of gall-making insects, including tiny flies called midges. The most common species of willow gall midge is the Willow Beaked-Gall Midge, Rabdophaga rididae. In the spring, after mating, the adult female midge lays an egg in a willow bud (often terminal) that is just starting to expand. The egg soon hatches and the larva burrows deeper into the bud, which causes the bud tissue to swell and form a gall, usually with a “beak” at the top. The larva remains inside the gall through the winter, where it has a constant supply of food (the interior of the gall) and shelter. In the spring the larva pupates, and an adult midge emerges and begins the cycle all over again. Some gall midges are crop pests, but willows are not significantly damaged by the Willow Beaked-Ball Midge.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Jewelweed Gall Midges

10-4-13 jewelweed gall  277Abnormal plant growths called galls come in all sizes and shapes, are found on leaves, buds and stems, and are caused by a number of agents, including insects. A majority of insect galls are caused by the eggs and developing larvae of flies, wasps and midges. Jewelweed, or Touch-Me-Not (Impatiens capensis), has a very distinctive looking aborted bud gall that is produced by a midge (Schizomyia impatientis). While some galls provide shelter and food for a lone resident, the Jewelweed Gall Midge is colonial, and several orange larvae can be found residing in separate cavities within the gall. These midge larvae are now emerging and will overwinter as adults.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Apple Scat

10-4-13 woolly bear scat 028At this time of year it’s not unusual to find the scat of various mammals consisting mostly of apple. Red Foxes, White-tailed Deer, Cottontail Rabbits, Porcupines and Black Bears, in particular, are all avid consumers of this appetizing fruit. Birds, including Purple Finches, Cedar Waxwings and Northern Mockingbirds, also include apples in their diets . While many insects drink the juice of apples, it’s not that often you see an insect like this Woolly Bear caterpillar (the larval stage of the Isabella Tiger Moth) consuming a sizable chunk of a McIntosh apple and leaving behind tell-tale scat. (Discovery by Sadie Richards)

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

American Elderberry & the Elderberry Borer

9-9-13 American elderberry 183Interestingly, while the ripe fruit of American Elderberry (Sambucus canadensis) is used in the production of wine, pies and jelly, the leaves, stems, roots and unripe fruits of this plant are poisonous, due to the presence of calcium oxalate crystals. Elderberry Borers (Desmocerus palliates) seem immune to these crystals, however. They lay their eggs at the base of the plant, and the hatching larvae then burrow their way into the stems and eat tunnels into the roots of the plant. Adult beetles that emerge and are present through the summer are hard to miss, with their shimmering blue and yellow/orange outer wings, or elytra.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Black Swallowtail Larvae Soon to Form Chrysalises

8-29-13 black swallowtail larva and QALace 028In its younger days, this Black Swallowtail larva resembled a bird dropping, but in successive molts a green (or white), yellow and black pattern develops. Often discovered in vegetable gardens on carrot, parsley and dill plants, it also feeds on wild members of the carrot/parsley family (Apiaceae), including its favorite, Queen Anne’s Lace (pictured). Seeds as well as leaves are rapidly consumed, as the time for one last molt and the development of a chrysalis in which to overwinter approaches.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Cerceris fumipennis: a biosurveillance tool for the emerald ash borer

8-19-13 Cerceris wasp with beetle prey2 099While we’re more familiar with social wasps, such as paper wasps, yellow jackets and hornets, there are also parasitic and solitary wasps. Solitary wasps live alone (as their name implies), all the females (not just the queen) are fertile and they are predatory. Among them is a wasp, Cerceris fumipennis, which preys exclusively on the family of beetles (Buprestidae) to which the Emerald Ash Borer (EAB), the invasive beetle that’s threatening the ash tree population, belongs. After catching and paralyzing its prey, the wasp carries it back to her larvae in the nest she’s dug underground. A biosurveillance program exists which involves monitoring the prey that this species of wasp collects and brings back to the nest, in order to detect the presence of the Emerald Ash Borer in any given area. (This is how the EAB was first detected in Connecticut.) Pictured is a Cerceris fumipennis wasp with a Buprestid beetle (not an EAB) prey. (To become involved in Vermont’s citizen science biosurveillance program next summer, contact entomologist Trish Hanson of the Vermont Dept. of Forests, Parks and Recreation at .)

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

The Give and Take of Food in a Paper Wasp Nest

8-7-13  paper wasp nest 011Like all adult wasps, bees, and ants, adult paper wasps are limited to liquid diets – they have no chewing mouthparts, and the passageway between their head and abdomen, where food is digested, is so narrow that pieces of food wouldn’t fit through it. Wasp larvae (the white grub-like organisms in the upper third of the pictured wasp nest cells) are able to eat a wider range of food, due to mouthparts and their body structure. Adult paper wasps capture and feed caterpillars and other insects to their larvae. The larvae then digest their food and produce saliva rich in nutrients. The adult wasp proceeds to scrape her abdomen across the nest, producing a vibration that signals to the larvae to release some of their carbohydrate-rich saliva which the adult then drinks. (Cells covered with white paper nest material contain wasp pupae.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Adult Stoneflies Emerging

7-2-13 stonefly adult 058Stoneflies spend their larval stage on the bottom of streams, in amongst the stones for which they’re named. Some species of larval stoneflies feed on decomposing organic matter, others are predators. As adults, very few stonefly species feed due to their short life span. Those that do feed on algae and lichens, nectar, or pollen. After shedding their skin 10 to 22 times (depending on the species), the larvae crawl out of the water, split their skin a final time and emerge as winged adults. Most emerge in the spring or early summer, though some species mature in the fall, and even in winter. Most larvae spend 10 to 11 months under water, and only 1 to 4 weeks as terrestrial adults. The adults spend their days hiding on the branches or leaves of streamside vegetation, and crawl around at night. They usually only fly to disperse to a new habitat, which is surprising, given the size of their wings.

Caterpillar Survival Strategies

6-14-13 camouflaged catterpillar 049The larvae of moths and butterflies are very susceptible to predation, especially by birds, and they utilize many different strategies to protect themselves. Shapes, colors and behavior all contribute to their survival. Some larvae take on the appearance of less appetizing things, such as bird droppings, twigs or leaves. Some have large eye spots which presumably scare predators. Others have cryptic coloration which makes them all but invisible. The pictured green caterpillar uses both color and behavior to visually disappear on the fern it is consuming.

Hairy Woodpeckers Raising Young

6-3-13 hairy woodpecker looking right 330The chipping of hungry Hairy Woodpecker nestlings can easily be detected by human ears, even though it comes from deep within a tree cavity. One is reminded of how beneficial this species is when observing the steady delivery of food by these woodpeckers to their young. More than 75% of an adult Hairy Woodpecker’s diet consists of injurious insects, while the amount of useful insects and cultivated fruits that they destroy is insignificant. Beetle larvae (mostly wood-boring) make up 30% of the insects that are consumed, with ants ranking second, at 17%. Caterpillars, such as those pictured, comprise about 10% of an adult Hairy Woodpecker’s diet, but given this parent’s beakful, one wonders if the percentage is greater for nestlings.

Sawfly Larva

5-31-13 sawfly larva 266Although it looks like a caterpillar, this larva is not going to metamorphose into a butterfly or moth. This is because it is a sawfly larva, and is closely related to bees and wasps. (It gets its name from the adult female’s saw-like, egg-laying ovipositor that opens like a jack-knife from the tip of her abdomen.)There are several ways to distinguish between these two types of larvae (sawflies and butterflies/moths). While both have three pairs of true legs on their thorax, caterpillars (larvae of moths and butterflies) have up to five pairs of prolegs (fleshy structures that resemble legs) located on their abdomen behind their true legs, while sawfly larvae have six or more pairs. A closer look at the tips of the prolegs on caterpillars will reveal tiny hooks called “crochets,” which are lacking on sawfly larvae prolegs. Sawfly larvae also exhibit distinctive behavior. If you see something that looks like a caterpillar feeding along the margin of a leaf and it rears up its hind end when disturbed (perhaps to frighten predators), chances are great that you are looking at a sawfly larva.

White Admiral/Red-spotted Purple Caterpillars Emerge from Hibernation

5-15-13 white admiral larva 133Butterflies in the family Nymphalidae are also referred to as brush-footed butterflies (their front pair of legs are much reduced, brush-like and nonfunctional). Several species of Admiral butterflies belong to this family, and one of the most common in New England is the White Admiral, also known as the Red-spotted Purple. White Admirals overwinter as caterpillars and emerge in late April to feed for several weeks on the young leaves of cherries, willows, poplars and birches, as well as other trees, before forming chrysalises and transforming into butterflies. It is relatively easy to recognize the larva of any species of Admiral butterfly, as they are our only horned bird-dropping mimics. Quite an effective way to discourage predators!

Goldenrod Ball Gall Fly Larva

3-22-13 goldenrod ball gall fly larva IMG_6182The round “ball” that is often present on the stem of goldenrod plants contains the overwintering larva of a fly (Eurosta solidaginis). A year ago an adult female fly laid an egg in the stem of the goldenrod plant. The egg hatched and the larva proceeded to eat the interior of the stem. As it did so, the larva excreted chemicals which caused the plant to grow abnormally, creating a ball-shaped “gall.” If you were to open a goldenrod ball gall today, you would probably find an overwintering larva (if a downy woodpecker or parasitic wasp hadn’t gotten there before you). Within the next few weeks the larva will pupate, and as early as April the adult fly will emerge from the gall, having crawled out the passageway that it chewed last fall. An inflatable “balloon” on its forehead allows the fly to burst through the remaining outermost layer of tissue at the end of the passageway. The adult fly lives about two weeks, just long enough to mate and begin the process all over again.


Get every new post delivered to your Inbox.

Join 2,748 other followers