An online resource based on the award-winning nature guide

Pupae

Ribbed Pine Borer’s Winter Pupal Chamber

11-6-13  ribbed pine borer winter shelter 132The larva of the Ribbed Pine Borer, Rhagium inquisitor, (a beetle) lives just under the inside of a pine tree’s bark. It is a long-horned beetle, and in the fall, when it’s ready to pupate, it creates an oval cell by chewing a relatively flat chamber approximately 1 ¼” long. The Ribbed Pine Borer uses the woody fibers it chewed to form a raised “wall” surrounding the chamber. It then pupates inside the wall, and overwinters in the chamber as an adult beetle, emerging to mate in the spring. (Thanks to Kitty Stanley for photo op.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Willow Beaked-Gall Midge

10-30-13 willow beaked-gall midge   047Now that most of the leaves have fallen, it’s a good time to look for galls that form on woody plants. Willows are host to a great number of gall-making insects, including tiny flies called midges. The most common species of willow gall midge is the Willow Beaked-Gall Midge, Rabdophaga rididae. In the spring, after mating, the adult female midge lays an egg in a willow bud (often terminal) that is just starting to expand. The egg soon hatches and the larva burrows deeper into the bud, which causes the bud tissue to swell and form a gall, usually with a “beak” at the top. The larva remains inside the gall through the winter, where it has a constant supply of food (the interior of the gall) and shelter. In the spring the larva pupates, and an adult midge emerges and begins the cycle all over again. Some gall midges are crop pests, but willows are not significantly damaged by the Willow Beaked-Ball Midge.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


The Give and Take of Food in a Paper Wasp Nest

8-7-13  paper wasp nest 011Like all adult wasps, bees, and ants, adult paper wasps are limited to liquid diets – they have no chewing mouthparts, and the passageway between their head and abdomen, where food is digested, is so narrow that pieces of food wouldn’t fit through it. Wasp larvae (the white grub-like organisms in the upper third of the pictured wasp nest cells) are able to eat a wider range of food, due to mouthparts and their body structure. Adult paper wasps capture and feed caterpillars and other insects to their larvae. The larvae then digest their food and produce saliva rich in nutrients. The adult wasp proceeds to scrape her abdomen across the nest, producing a vibration that signals to the larvae to release some of their carbohydrate-rich saliva which the adult then drinks. (Cells covered with white paper nest material contain wasp pupae.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Goldenrod Ball Gall Fly Larva

3-22-13 goldenrod ball gall fly larva IMG_6182The round “ball” that is often present on the stem of goldenrod plants contains the overwintering larva of a fly (Eurosta solidaginis). A year ago an adult female fly laid an egg in the stem of the goldenrod plant. The egg hatched and the larva proceeded to eat the interior of the stem. As it did so, the larva excreted chemicals which caused the plant to grow abnormally, creating a ball-shaped “gall.” If you were to open a goldenrod ball gall today, you would probably find an overwintering larva (if a downy woodpecker or parasitic wasp hadn’t gotten there before you). Within the next few weeks the larva will pupate, and as early as April the adult fly will emerge from the gall, having crawled out the passageway that it chewed last fall. An inflatable “balloon” on its forehead allows the fly to burst through the remaining outermost layer of tissue at the end of the passageway. The adult fly lives about two weeks, just long enough to mate and begin the process all over again.


A Great Christmas Present!

If you’re looking for a present for someone that will be used year round, year after year, Naturally Curious may just fit the bill.  A relative, a friend, your child’s school teacher – it’s the gift that keeps on giving to both young and old!

One reader wrote, “This is a unique book as far as I know. I have several naturalists’ books covering Vermont and the Northeast, and have seen nothing of this breadth, covered to this depth. So much interesting information about birds, amphibians, mammals, insects, plants. This would be useful to those in the mid-Atlantic, New York, and even wider geographic regions. The author gives a month-by-month look at what’s going on in the natural world, and so much of the information would simply be moved forward or back a month in other regions, but would still be relevant because of the wide overlap of species. Very readable. Couldn’t put it down. I consider myself pretty knowledgeable about the natural world, but there was much that was new to me in this book. I would have loved to have this to use as a text when I was teaching. Suitable for a wide range of ages.”

In a recent email to me a parent wrote, “Naturally Curious is our five year old’s unqualified f-a-v-o-r-I-t-e  book. He spends hours regularly returning to it to study it’s vivid pictures and have us read to him about all the different creatures. It is a ‘must have’ for any family with children living in New England…or for anyone that simply shares a love of the outdoors.”

I am a firm believer in fostering a love of nature in young children – the younger the better — but I admit that when I wrote Naturally Curious, I was writing it with adults in mind. It delights me no end to know that children don’t even need a grown-up middleman to enjoy it!


Cecropia Moth Cocoon

This past summer there seemed to be more giant silkmoths than usual, including Cecropia Moths (Hylaphora cecropia).  (see http://naturallycuriouswithmaryholland.wordpress.com/2012/06/04/cecropia-moth-2/ ). Assuming many of these moths bred and laid eggs, and that most of the larvae survived, there are probably a large number of Cecropia cocoons in our woods.  Even so, it is not an easy task to find them, as they are so well camouflaged, and are often mistaken for a dead leaf.  Cecropia caterpillars spin silk and fashion it into a three-inch long, tan cocoon (giant silkmoths make the largest cocoons in North America) which they attach lengthwise to a branch or stem.  There is a tough but thin layer of silk on the outside, which protects an inner, thicker and softer layer of silk on the inside.  The caterpillar enters the cocoon through loose valves it makes in both layers, which are located at the tip of the cocoon’s pointed end.  Shortly after the larva crawls inside both of these layers, it pupates.  Its skin splits, revealing a dark brown pupa. For the rest of the winter and most of the spring, it remains a pupa.  In early summer it metamorphoses into an adult moth and exits the cocoon through the same valves  through which it entered.

 


Tobacco Hornworms & Brachonid Wasps

Tobacco Hornworms, Manduca sexta (often found feeding on tomato plants and confused with Tomato Hornworms, Manduca quinquemaculata) are often the target of a species of Brachonid wasp that parasitizes beetle, moth, fly and sawfly larvae. The adult wasp lays her eggs inside the hornworm with her long ovipositor. The eggs hatch and the wasp larvae feed on the caterpillar. Eventually the wasp larvae emerge and form white pupa cases on the skin of the dying hornworm larva, inside of which they transform into winged adults. Braconid wasps are extremely good at locating hornworms, even when there are very few to find. Because they parasitize hornworm, cabbage worm, aphid and gypsy moth larvae, Braconid wasps are considered important biological control agents. If you want to discourage Tobacco Hornworms in your tomato patch, allow the wasps to complete their metamorphosis – this accomplishes both the demise of the hornworm, as well as an increased population of Braconid wasps.


Monarch Butterfly Chrysalis

Of the multitude of discoveries that every summer offers us, one of the most magical is that of  a Monarch Butterfly chrysalis.  While locating a Monarch larva is not all that difficult, especially when they are as prolific as they are this summer, finding a chrysalis doesn’t happen all that often. Most butterfly chrysalises are a rather drab brown, but the Monarch’s is a beautiful green which serves to camouflage it in fields where the caterpillars feed on milkweed and eventually pupate (form a chrysalis).  The Monarch caterpillar, when mature, usually seeks a sheltered spot under a leaf or branch where rain will not cause the silk button by which it hangs to disintegrate.  The chrysalis in the photograph is attached to a blade of grass which was anchored with silk to another blade of grass in order to make it more secure.  No matter how many I’ve seen, each one still takes my breath away.


Spongilla Fly Cocoon

If you’ve never heard of a Spongilla Fly, you’re not alone. We don’t see its larval stage, as it lives under water, where it feeds exclusively on fresh water sponges. You can find these sponges living in the still waters of large rivers, lakes and wetlands. The beautiful silken net, as well as the small cocoon inside the net, are created by a Spongilla Fly larva after it crawls out of the water and chooses a spot on land on which to pupate (in this case on a seat cushion). The entire structure is less than ¼” in diameter.


Ladybug Metamorphosis

This slideshow requires JavaScript.

Much to my delight, many of you knew that yesterday’s mystery photo was none other than the larval stage of a ladybug (referred to as a “ladybird beetle” by entomologists, as it is not a true bug, but a beetle). I remember when I first learned what the different stages of a ladybug’s life cycle looked like – I couldn’t believe that this miniature alligator-like creature turned into a sweet little ladybug. Approximately 88% of all insects pass through four separate stages (complete metamorphosis: egg, larva, pupa, adult) by the time they reach adulthood. Ladybugs are one of these insects. The first three stages of a ladybug’s life each last anywhere from 7 to 21 days, depending on weather and food supply. An adult ladybug lives for 3 to 9 months. The larvae of all ladybug species (there are approximately 450 in New England) have a similar appearance. Yesterday’s larva, as well as today’s pupa (and accompanying shed larval skin) and adult, are  Multicolored Asian Ladybugs.


Follow

Get every new post delivered to your Inbox.

Join 2,748 other followers