An online resource based on the award-winning nature guide – maryholland505@gmail.com

August

Chirping Thermometers

The evenly-spaced chirping notes of the male Snowy Tree Cricket (Oecanthus fultoni) greet our ears nightly at this time of year.  Named for its pale color and tendency to be found in trees, vines and shrubs, this cricket is well known for its ability to convey the temperature to anyone who can count the number of chirps it makes in 14 seconds.  Add “40” to this number and you know how hot or cold the evening is in degrees Fahrenheit.  The relationship between the air temperature and the rate at which crickets chirp is called Dolbear’s Law.

Crickets make chirps (stridulate) by rubbing a structure on the top of one forewing wing (scraper) against wrinkles (file) on the underside of the other forewing.  To find a Snowy Tree Cricket that is stridulating, check the underside of branches and leaves.  A living thermometer awaits you there.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Mink’s Cubs

One last update, as so many readers have inquired about the welfare of Mink’s three cubs.  They have been sighted several times, traveling apart from one another.  One cub has been spotted more than once, but not captured, at someone’s bird feeder.  Efforts (game cameras and bait food) are being made to lure and capture them after which they will be brought to the Kilham Bear Center in Lyme, NH where they will be fed and cared for and eventually released into the wild.

Mink’s cubs are about 8 months old and weigh between 25 and 35 pounds. Black Bear cubs typically stay with their mother until they are 18 months old, at which time they are weaned and on their own.  Cubs as young as five months old have survived the loss of their mother, so one can only hope that, if not caught and raised by humans, Mink’s cubs will be as fortunate.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com  and click on the yellow “donate” button.


Mink Update

I wanted to update everyone on Mink, the deceased Black Bear in New Hampshire, as more information regarding her death has been released. Biologists now think she may have died of natural causes.  From the condition of her teeth they have determined that she wasn’t in her teens, as previously thought, but  between 20 and 30 years old.  That is the normal life span of a Black Bear.  Her death is still very sad, but perhaps a little easier to accept if humans were not involved.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


A Tribute To A Grande Dame

This week I learned of the death of an old acquaintance.  Mink, a Black Bear whom I’ve photographed numerous times with numerous batches of cubs, was found dead on the banks of a river in New Hampshire, close to where she had lived for many years.  If you’ve read my children’s book, Yodel the Yearling, you’ve met one of her offspring.

Mink was an extraordinary mother — sending her cubs up a giant White Pine tree whenever danger threatened, tolerating with unbelievable patience being climbed on and bitten by her cubs, grooming burs out of the coats of rambunctious offspring with her teeth and much, much more.   She was so acclimated to people (having raised many cubs within sight of houses) she allowed me to witness her nursing her cubs multiple times (see NC post, 4/4/18).

Four years ago I stumbled upon Mink and her three yearling cubs sleeping at the base of a “baby sitter” tree.  Since then they have had a life of turmoil, having been transported to the wilds of northern New Hampshire due to becoming “pests” where they lived because people left their garbage and bird feeders accessible during times of the year when bears are active. Mink managed to find her way back to her home territory and was raising the three young cubs she bore last winter when she met her untimely death, most likely as a result of being hit by a car.  I couldn’t let her passing go by without a nod to her and the richness she added to so many peoples’ lives.  I, for one, shall forever be indebted to her for tolerating my presence and allowing me to observe and photograph ursine behavior in the wild so few are privileged to see.  (Photo:  Mink & one of her three cubs, taken 4/24/20, soon after emerging from winter natal den)


Cabbage Whites Mating

Cabbage White butterflies (Pieris rapae) are seemingly common, rather ordinary and unremarkable butterflies.  That is, until you become acquainted more intimately with their reproductive idiosyncracies.  The male’s sperm, along with a nutritious snack, is contained within a package called a spermatophore. It is the size of the spermatophore that defies belief, as it makes up 13 percent of the male’s body weight.  Translated into human terms, a 150 male would possess a 20-pound package of sperm.

The male Cabbage White deposits its spermatophore into a pouch within the female’s reproductive tract and the sperm proceed to swim to a second pouch where they are used to fertilize the female’s eggs.  The female absorbs the nutrients that accompanied the sperm and uses them to make approximately half the eggs she lays.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Eastern Garter Snakes Giving Birth

Seventy percent of the world’s snakes lay eggs and only about thirty percent give birth to live young.  Eastern Garter Snakes (Thamnophis sirtalis sirtalis) are among the latter, giving birth in August to between two and thirty-one offspring (averaging 23).  Carrying and incubating developing embryos within their body is more common for northern snakes and there is good reason for this.  Whereas eggs are subject to whatever temperature fluctuations occur where they were laid, a snake that carries her young to term within her is able to move to warm areas that are ideal incubation temperatures. This causes less stress for the developing embryos and also results in a greater number of viable young.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Male Walkingstick Cerci

Congratulations to Sharon Weizenbaum, Beth Herr and David Ascher for correctly identifying the Mystery Photo as the tip of the abdomen of a Common Walkingstick (Diapheromera femorata), also known as Devil’s Darning Needle, Devil’s/Witch’s Riding Horse, and Prairie Alligator due to its unusual shape.  While the Common Walkingstick is a mere 3” long, the largest North American species can grow to 7” and one tropical species may reach 14”.

The Walkingstick lives up to its name – it is easily mistaken for a twig with its slender body and legs.  By remaining motionless during the day (or gently swaying in the wind like a leaf or twig would), and feeding on the leaves of various deciduous trees at night it avoids many predators with its physical and behavioral adaptations. The practice of using both camouflage and mimicry is referred to as crypsis.

Both the male and female Walkingstick possess a pair of appendages at the tip of their abdomen known as cerci.  The cerci on a female are short and straight, while those on the male are longer and curved.  They are sensory organs, but in addition, the male uses his cerci to grasp the female when mating with her (see inset).  According to entomologist Dr. Gilbert Waldbauer, the cerci are very effective, allowing the male Walkingstick to clasp the female for many hours (weeks for some species) in order to prevent another male from mating with the female.

This is the time of year you are most likely to notice Walkingsticks, as this is when they are maturing and reproducing. Females drop their eggs to the ground from the canopy and because a portion of the outside (capitulum) of each egg is edible (like the elaiosomes of many spring ephemerals), ants carry the eggs below-ground to their nests and eat the capitulum, leaving the intact eggs to hatch and develop.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Praying Mantises Preying

Between being able to swivel its head nearly 180 degrees and having two large compound eyes and three simple eyes, the Praying Mantis (Mantis religiosa) misses very few insects within reach. Due to its green or brown coloration, the Praying Mantis is well camouflaged as it lies in ambush or stalks its prey.  Spines, tooth-like tubercles and a claw near the tip of each foreleg enable this predator to have a secure grasp on the moths, crickets, grasshoppers, flies, and other insects it consumes.  (A Praying Mantis in Pennsylvania was photographed successfully capturing a Ruby-throated Hummingbird.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Milkweed Leaf Beetle Survival Mechanism

Many insects use splashy colors and color patterns to defend against being eaten.  (This practice is called “aposematism” from the Greek for “away” and “sign.”) If you spend time in a milkweed patch, you’ll notice that several of the insects you see have bright orange and black coloration.  Milkweed contains defensive chemicals known as cardiac glycosides and Monarchs as well as several other insects (many of which are black and orange) that feed on milkweed can tolerate them and store these chemicals as a defense. When avian predators consume a Monarch butterfly containing these chemicals, a bird suffers digestive upset.

Once a bird has gotten sick after eating a poisonous black and orange insect such as a Monarch, it tends to avoid any and all insects with similar coloration, regardless of their toxicity or lack of it.  Milkweed Leaf Beetle larvae and adults do not absorb the cardiac glycosides in milkweed like a Monarch, so they have no toxic compounds in them and will not poison a predator.  Insect-eating birds don’t know this, however, and the beetles successfully deter predation through their coloration.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Green Herons’ Versatile Necks

Most of the time Green Herons appear to be stout, compact herons.  When perched or stalking, they tuck their neck into the contours of their body and appear quite small (see inset).  Only when threatened or when striking prey is the true length of a Green Heron’s neck revealed.  If startled, a Green Heron will stretch its neck way out, most likely in order to appear large and formidable to a potential predator.  When hunting for prey, it can extend its neck an inordinate distance (see photo). A specialized vertebra in their neck enables them to strike at prey with a tremendous amount of force.  Some scientists compare the Green Heron’s extendible neck to that of certain dinosaurs, from which they are thought to have evolved.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


White-blotched Heterocampa Caterpillars On The Move

It’s hard to believe, but this fuschia-colored caterpillar is going to emerge from its cocoon next spring as a relatively dull black and white moth called the White-blotched Heterocampa (Heterocampa umbrata).  These caterpillars have two shiny knobs behind their head which are the remnants of “antlers” that the caterpillars have during their first instar. White-blotched Heterocampa larvae change color as they mature and develop.  At any given stage, a caterpillar could be purple and fuchsia, or brown and tan or green and white; it is not unusual for them to be mistaken for three different species.  The caterpillars can be found feeding on oak leaves.  Look for the adult woodland moths at night, when they are attracted to lights.  (Thanks to Lily Piper Brown who found two of these amazing caterpillars recently, and her mother, Sadie Brown, who photographed this one.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Ruby-throated Hummingbirds Pollinating Cardinal Flower

Cardinal Flowers are to Ruby-throated Hummingbirds what Goldenrod is to Honey Bees in the fall —  an important source of nutrients just when it’s needed most.  Just as hummingbirds are preparing for their migration south and nearly doubling their weight (from about 3.25 grams to 6 grams) before crossing the Gulf of Mexico, Cardinal Flower blossoms. A single migration can mean a nonstop flight of up to 500 miles over a period of 18 to 22 hours and nectar such as they obtain from Cardinal Flower helps sustain them.  This relationship is not one-sided however – it is mutually beneficial for both the bird and the plant.  In acquiring nectar from the blossoms of Cardinal Flower, hummingbirds inadvertently perform a crucial task, that of pollinating many of the flowers they visit.

The blossoms of Cardinal Flower have two phases.  In one the male reproductive part of the flower (the white “moustache” you see above the petals) matures and produces pollen.  After the male structure matures and disappears, the female reproductive part develops and extends out from the same place where the male flower was.  The flower parts mature at different times in different flowers on a given stalk, so both male and female flowers are present on the same plant at the same time.  In order to reach the nectar from Cardinal Flower, a hummingbird must get into a position where the top of its head brushes against the flower’s reproductive parts.  If the flower is in the male phase the hummingbird’s head gets dusted with pollen (see inset).  If the flower it visits is in the female phase, the pollen on its head (from previous visits to male flowers) is deposited on the stigma of a female flower, pollinating the flower.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Luna Moth Caterpillars

The large, green swallow-tailed moth known as the Luna Moth (Actias luna) is familiar to many.  Its short life of about a week begins in June when it emerges from its cocoon, mates, lays eggs and then dies. The larval stage of this giant silk moth is not as well known, but has just as striking an appearance as the adult moth.  It is an unforgettable lime-green with tiny magenta spots along its length.

When threatened by a predator, Luna Moth caterpillars have several defensive behaviors, including emitting clicks as a warning and regurgitating the contents of their intestine, both of which have proved to be effective deterrents.  Look for these caterpillars on their host trees which include birch, hickory and walnut.  (Thanks to Susan and Dean Greenberg for photo op.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.

 


Juvenile Common Loons Molting For A Second Time

When Common Loon chicks first hatch, they are covered with down and look like sooty black puffballs.  These feathers are pushed out when the loons are 10 to 14 days old by a second plumage of brownish-gray down feathers.  When the young are about a month old, these feathers start to be replaced by juvenal contour feathers. By the time the young loons are 10 or 11 weeks old, their down feathers are mostly gone and their juvenal plumage is nearly complete. This plumage is very similar to the winter plumage of adult loons. You can tell the difference between the two by the whitish-gray tips of the juveniles’ feathers, which the adults lack.  (Pictured juvenile loon is about seven weeks old, showing remnants of the second down plumage.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Mystery Photo: Bald Eagle or Osprey Pellet

 

Congratulations to Jill Osgood (“osgoodjill”), the first reader to correctly identify the pellet of either a Bald Eagle or an Osprey.  Many people are familiar with bird pellets – lumps of material consisting of the indigestible parts of a bird’s diet which are regurgitated by the bird hours after they’ve eaten their prey.  Raptors often consume their prey whole, including parts that are not easily digestible such as fur, feathers, bones, teeth, nails, etc.  These parts get as far as the proventriculus, an organ located between the esophagus and the gizzard, where they are packed into a pellet.

We often associate pellets with owls, but many species of birds, in addition to owls and other birds of prey, form pellets.  They include grebes, herons, cormorants, gulls, terns, kingfishers, crows, jays, dippers, shrikes, swallows, and most shorebirds.  The size of the Mystery Photo pellet (3” long) indicates that the bird that regurgitated it was very large – in general, the larger the bird, the larger the pellet.  It was found near the shore of Lake Champlain, where Ospreys and Bald Eagles are not uncommon.

If I had to, I would guess the pellet was regurgitated by a Bald Eagle. Osprey are piscivores, eating primarily fish, and bald eagles are carnivores, eating a variety of fish, mammals and amphibians. A close look at the pellet reveals, in addition to fur and fish scales, the upper mandible of a very small rodent on the left hand end of the pellet.  An Osprey’s pellets consist of primarily scales and bones, whereas a Bald Eagle’s pellets are composed primarily of hair (its stomach acid breaks down the bones and scales).

Twelve to eighteen hours after consuming prey, a Bald Eagle casts a pellet. Relatively odorless and light-weight, these pelleted remains can reveal the varied diet of this raptor.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Bald-faced Hornet Queens Laying Specialized Eggs

A Bald-faced Hornet colony begins in the spring when a queen emerges from winter hibernation. The queen builds a small nest, creates a few brood cells within the nest, deposits eggs in them and feeds the larvae when they hatch.  These larvae are female workers — they will continue the nest building, food collection, feeding the larvae and protecting the nest while the queen concentrates on laying eggs.

During the summer the colony (and size of the nest) grows until there are between 100 to 400 workers. Toward the end of the summer the queen lays two special types of eggs. The first will be, like the workers’ eggs, fertilized eggs that will develop into females, but these females will be fertile (and develop into queens). The second group of eggs will be unfertilized eggs. These eggs will develop into fertile males. The maturation and emergence of the new queens and the fertile males marks the end of the functioning of the colony. At this point the workers are not replaced and die out. The ruling queen, having served her purpose, also dies. The newly-emerged adults (queens and fertilized males) leave the nest, mate, and the fertilized queens overwinter and begin their colony cycle all over again in the following spring.  Some small nests complete their cycle by mid-September, while some large nests are still going strong until the cold kills the larvae in late November.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Spring Peepers Peeping

The peeps of male Spring Peepers can be heard fairly consistently this time of year. Unlike in the spring, these calls are coming not from bodies of water, but from the woods nearby. And they are single peeps coming from individual peepers, not the chorus of “sleigh bells” one hears in the spring. This phenomenon occurs so regularly in the fall that herpetologists have given it a name – “fall echo.” They speculate that the calling of peepers is spurred by light and temperature conditions that mimic those that occur in the spring, during Spring Peeper mating season.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


I meant “beeches!”

The last sentence of this morning’s post should have read : “The diminishing number of healthy beech trees will have a significant effect on consumers of beechnuts as well as a broad array of other organisms.”  Believe it or not I proof read it several times and just didn’t catch that my fingers weren’t typing what my mind was thinking!


A Promising Fall Beechnut Crop

Beechnuts, high in protein and fat, are the primary fall and winter food for many forest wildlife species including Red, Gray and Flying Squirrels, Eastern Chipmunks, Black Bears, Blue Jays, Tufted Titmice, Wild Turkeys, and Ruffed and Spruce Grouse.  The dependence of these animals on this food source makes them vulnerable to the American Beech’s cyclical nut production.

In the Northeast, American Beech (Fagus grandifolia) mast crops (amount of beechnuts produced by beech trees) have a two-year cycle: one year they produce an overabundance of nuts and the following year very few. Among other animals, Black Bears rely on these nuts to sustain themselves over the winter.  That a bear’s nutritional health affects its reproductive health was documented in  a study in Maine that showed that the mean proportion of female bears producing cubs decreased to 22% when a denning period followed a poor beechnut crop. During denning periods following good beechnut production, 80% of the productively available females produced cubs.

Many American Beech trees in the Northeast suffer from Beech Bark Disease which has seriously compromised their ability to produce nuts.  Invasive scale insects (Cryptococcus fagisuga) invade a tree. Through a presently unknown mechanism, excessive feeding by these insects causes two different fungi (Neonectria faginata and Neonectria ditissima) to produce annual cankers on the bark of the tree. This disease decreases nut production, and eventually lesions around the tree girdle it and causes the tree’s death. The diminishing number of healthy beech trees will have a significant effect on consumers of beechnuts as well as a broad array of other organisms.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Snowberry Clearwing Moths Gathering Nectar

There are four species of clearwing (also referred to as hummingbird) moths in North America. The most familiar ones are the Snowberry Clearwing (Hemaris diffinis) and the Hummingbird Clearwing (Hemaris thysbe).  These day-flying moths fly and move like hummingbirds (hovering near flowers while drinking nectar) and the males have a flared “tail” like that of a hovering hummingbird.  It is also very easy to mistake one for a bumble bee.  Scales cover the wings of butterflies and moths, but clearwing moths lose many of these scales and thus have partially transparent (“clear”) wings.

Like most moths, clearwing moths have a very long tongue (can be twice as long as their body) which they carry rolled under their heads and that they use to reach the nectar of long-necked flowers.  They are attracted to the flowers of phlox, beebalm, honeysuckle and swamp milkweed (pictured), among others. If you approach a clearwing moth as it hovers, you may detect the humming sound that they make with their wings.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.

 


Monarchs Splitting Exoskeleton For The Fifth And Final Time

In the Northeast there appears to be an amazingly large number of Monarch larvae this year, and most of these larvae will complete their metamorphosis by transforming into a beautiful green chrysalis. Once mature, the larva, or caterpillar, wanders about and finds a suitable spot (usually protected and stable) to spend the next two weeks hanging precariously in the wind.  It then spins a silk mat in this location, and puts a silk “button” in the middle of the mat.  It clasps the button with its last set of prolegs (it has three pairs of true legs, and five pairs of so-called prolegs) and spends about 18 hours hanging in a “J,” with its head down, preparing to split its exoskeleton for the last time and reveal the chrysalis within it.

Ba Rea, a Monarch specialist (and publisher of my children’s book, Milkweed Visitors), informs her “Monarchchaser’s Blog” (https://monarchchaser.wordpress.com/about-monarchs/) readers that even though the visible changes between the larval and pupal (chrysalis) stages of a Monarch are sudden, inside the caterpillar these changes are taking place gradually and long before we can see them.  “The parts that will transform the caterpillar into a butterfly are present from the time that the egg hatches.  Inside the caterpillar are “imaginal disks.”  As wonderfully fanciful as the word imaginal sounds, it is actually referring to the adult stage of the monarch which is called the imago.  These disks are the cells that will become the butterfly’s wings, legs, proboscis and antennae, among other things.  By the time the caterpillar is half an inch long its butterfly wings are already developing inside it.

After eight to fifteen days, the adult Monarch emerges from its chrysalis and heads towards Mexico (butterflies that emerge after the middle of August migrate). It is the great grandchildren and great great grandchildren of these migrating monarchs that will return next summer.  (Photo: Monarch hanging in a “J” from Jewelweed, also known as Touch-Me-Not — not the sturdiest of plants to hang from!)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Young Snowshoe Hares Dispersing

Snowshoe Hares have up to four litters a summer (females mate within 24 hours of giving birth).  Their litters range from two to nine young (leverets), with larger litters the further north you go. Unlike cottontails, the Snowshoe Hare gives birth to precocious young – their eyes open shortly after birth, they have a dense coat of fur, and they are able to weakly move about within 30 minutes.

The female leaves the nest once she’s through giving birth, and returns once a day to nurse her young.  By the fourth day, the young hares scatter from the nest.  They reassemble at the same time each evening and their mother appears and nurses them for five to ten minutes.  She then leaves and the young disperse. This behavior continues for about a month, until the young are fully weaned.  (Thanks to Virginia Barlow and Wendell for photo op.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.

 


Turtlehead Flowering & Being Pollinated By Bumble Bees

Turtlehead (Chelone glabra) can be found growing along stream banks and wetlands throughout eastern North America. This plant gets its common name from the flower’s long arching upper lip, or hood, which overlaps the lower lip like a turtle’s beak.

The male parts of the flower mature before the female parts, and when pollen is being produced these lips are very hard to pry open. Pollinators are primarily bumble bees, which are some of the only insects that have the strength to open the flower. When the female pistil matures, the lips relax a bit, so entry is easier. However, access to the nectar at the base of the flower is restricted (by a sterile stamen) to long-tongued insects. Thus, it is specifically long-tongued bumble bees that are able to both enter the flower and to reach the nectar. (Photo:  bumble bee collecting pollen (see filled baskets on hind legs) from Turtlehead)  Thanks to Jody Crosby for photo op.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


“Mating Wheels”

Dragonflies and damselflies both create what are called “mating wheels” when they mate.  The male grasps the female at the back of her head with the terminal appendages at the end of his abdomen and the female curls her abdomen forward until the tip of her abdomen reaches the male’s sex organs.

Many male dragonflies go to great lengths to make sure their sperm have reproductive success. Prior to mating they often remove any sperm that happen to be in the female from previous matings.  In addition, depending on species, they may leave after mating, fly with and guard the female as she lays her eggs, or remain grasping the female as her eggs are laid.  His proximity to the female during egg laying prevents other males from removing his sperm.

Much of this information, as well as excellent photos for identifying dragonflies and damselflies, can be found in A Field Guide to the Dragonflies and Damselflies of Massachusetts, by Burne, Loose and Nikula. Another excellent Odonata resource is Dragonflies and Damselflies of the East by Dennis Paulson.  (Photo:  Mating darners (fast flying, large dragonflies), male above female)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.