An online resource based on the award-winning nature guide

Hymenoptera

Goldenrod Crucial To Honeybee Survival

8-13  honeybee and goldenrod 028Goldenrod is one of the most important flowering plants for honeybees because it is a prolific producer of nectar and pollen late in the year. Blooming in the late summer and fall, this bright yellow-flowered composite provides nectar for the bees to build up stores of honey for winter. (Goldenrod honey is dark amber and strong tasting.) Goldenrod also provides pollen to help stimulate the colony to produce brood late into the fall. The pollen adds considerable amounts of protein, fats, and minerals to the diet of the late-season bees, helping ensure that they will have food throughout the winter.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Black and Yellow Mud Daubers Collecting Mud & Building Cells

7-20-15 mud dauber 140There are many species of mud daubers — wasps that build mud cells in which they lay eggs and in which their larvae develop. The female Black and Yellow Mud Dauber gathers mud at the edge of a pond or puddle, rolls it into a ball, grasps it in her mandibles and flies it back to her nest site, a spot protected from rain, often on a man-made building. Here she constructs several mud cylindrical cells.

Like most wasps, mud daubers are predators, and they provision their mud cells with select spiders (including jumping spiders, crab spiders and orb weavers) which they locate, sting and paralyze before stuffing them into a cell. The female lays an egg amongst the spiders, so that when the egg hatches the emerging larva will have a supply of spiders (that haven’t decomposed, because they’re not dead) to eat. She seals the cell with mud, and repeats this process several times after which she covers the small group of cells with more mud. The Black and Yellow Mud Dauber larvae pupate in the fall, overwinter inside the cells and emerge as adult wasps the following spring.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Sacrificial Honeybee Drones

6-26-15 drone 039A honeybee colony has one (fertile, egg-laying) queen, several hundred male drones and thousands of (sterile) female worker bees. The drone’s one and only function is to mate with and fertilize a queen. (They do no work in the hive, and are fed by workers until fall.) Early in a queen’s life, she makes several mating, or nuptial, flights. On these flights, she mates — in midair about 200-300 feet high — with anywhere from one to more than 40 drones. They are usually not from the queen’s hive, but may be from several other hives. The average number of drones with which a queen mates is 12. The queen stores up to six million sperm from her mating flights, and retains them for the remainder of her life — two to three years, for a long-lived queen. (Recent research shows that the more times a queen mates, the more attractive she is to her worker bees, due to pheromone alterations, and thus, the longer she lives before being replaced.)

While the queen may live several years after mating, the few drones that manage to partner with her do not, for they die after mating. Although brief, honeybee mating is dramatic. The drone inserts his endophallus (internal penis) into the queen’s sting chamber and with great force injects his sperm into her. The force with which this is done is so powerful that it ruptures the endophallus, separating the drone from the queen. The drone dies shortly thereafter. (At this time of year, honeybee hives often swarm due to overcrowding, with the old queen departing with half of the hive; a new, virgin queen then takes her nuptial flights.) Photo: A drone honeybee which lost its life after successfully mating with a queen. Discovered and photographed by Boston Beekeeper Association founder, Sadie Richards Brown.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Queen Bumblebees Foraging

queen bumblebee 098Most bumblebees, unlike honeybees, die in the fall. Only the young, fertilized bumblebee queens overwinter. When they emerge early in the spring, each must start a new colony, with no help from worker bees. The queen builds a ball of moss, hair or grass, often in an abandoned rodent nest or small cavity. Within this ball the queen builds a wax honey pot, and provisions it with nectar from early-blooming flowers. Next, she collects pollen and forms it into a mound on the floor of her nest. She then lays eggs in the pile of pollen, and coats it with wax secreted from her body.

The queen bumblebee keeps her eggs warm by sitting on the pollen mound, and by shivering her muscles, raising her body temperature to between 98° F. and 102° F. For nourishment, she consumes honey from her wax pot, which is positioned within her reach. In four days, the eggs, all of which will become female workers, hatch. The bumblebee queen continues her maternal care, foraging for pollen and nectar to feed to her larvae until they pupate. After this first brood emerges as adult bumblebees the queen concentrates her efforts on laying eggs. Unfertilized female worker bees raise the larvae and the colony swells in number. At the end of summer, new queens (females) and males are produced in order to allow the colony to reproduce. After the new queens mate and become fertilized, the males all die, along with the female worker bees. The queen then seeks shelter for the winter. (Photo: Tri-colored Bumblebee queen collecting Trailing Arbutus nectar or pollen)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Braconid Wasps Pupating and Emerging

8-29-14 braconid wasps 010Tobacco Hornworms, Manduca sexta (often found feeding on tomato plants and confused with Tomato Hornworms, Manduca quinquemaculata) are often the target of a species of a Braconid wasp (Cotesia congregata) that parasitizes beetle, moth, fly and sawfly larvae. The adult wasp lays her eggs inside the hornworm with her long ovipositor. The eggs hatch and the wasp larvae feed on the caterpillar. Eventually the wasp larvae emerge and spin silk pupa cases (cocoons) on the skin of the dying hornworm caterpillar, inside of which they transform into winged adults within four to eight days. Braconid wasps are extremely good at locating hornworms, even when there are very few to find. Because they parasitize hornworm, cabbage worm, aphid and gypsy moth larvae, Braconid wasps are considered important biological control agents. If you want to discourage Tobacco Hornworms in your tomato patch, allow the wasps to complete their metamorphosis – this accomplishes both the demise of the hornworm, as well as an increased population of Braconid wasps. (Thanks to Emily and Joe Silver for photo op.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Great Golden Digger Wasps Digging Nests & Provisioning Them with Food

8-11-15 great golden d.w.2 159The Great Golden Digger Wasp, Sphex ichneumoneus, is a solitary, predatory wasp whose hunting and nesting techniques are programmed and never vary. Having overwintered underground in a nest dug by its mother, the adult wasp emerges, often in August, and begins preparations for the next generation. She digs several nests in packed, sandy soil, using her mandibles to cut the earth. Emerging backwards from the ground with a lump of soil between her forelegs and head, she flips the soil with her forelegs beneath her body, scattering it to the sides with her hind legs. In this manner she excavates several cells off a central 4-6-inch deep tunnel.

The wasp seeks out prey — often a grasshopper, cicada or cricket – and then stings and paralyzes it. If the prey is small, she flies it directly to the nest. If prey is too large to transport aerially, the wasp will walk with it across the ground, dragging it by its antennae (see photo). She then drops the prey several inches from the nest hole. After crawling down into the nest for a brief inspection, she pulls the prey down into one of the cells while walking backwards. She then leaves to find another insect. When a cell contains paralyzed prey, the wasp lays an egg on the insect. The egg hatches within two or three days and the wasp larva begins eating the insect. Because the prey is not dead, decomposition is delayed, and the wasp larva’s food is relatively fresh. The developing wasps overwinter in the nest and emerge the following summer to begin the process all over again.

If you live near a sunny area of compacted clay and sand that has flower nectar for adults to feed on and crickets, grasshoppers and katydids for their larvae, you may well have a chance to observe this unique ritual. (Thanks to Marian Cawley for photo op.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Unequal Cellophane Bees

5-12-14  cellophane bee  205Ninety percent of bees are solitary – the fertile females create their own cells and feed their own young, with no help from a colony of worker bees. They often nest underground, rarely sting and are excellent pollinators, even though they don’t store honey. Colletes inaequalis, a type of Plasterer Bee also known as the “Polyester Bee,” and “Unequal Cellophane Bee,” is a solitary bee. It derives its common names from the practice of lining its underground nest cells with a secretion that, when it dries, forms a smooth, cellophane/polyester-like lining. This cell holds one egg suspended above a collection of pollen and nectar on which the larva will feed. The Unequal Cellophane Bee is crepuscular, which can be deduced by the large size of its eyes. It is one of the earliest species to become active in the spring, sometime between March and May, when adults bees emerge from underground chambers off a vertical tunnel dug by their mother last spring. (Why it is called an “Unequal” Cellophane Bee I have not been able to determine.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Follow

Get every new post delivered to your Inbox.

Join 3,610 other followers