An online resource based on the award-winning nature guide – maryholland505@gmail.com

October

Cedar-Apple Rust Galls

Galls are abnormal plant growths caused by various agents including insects, mites, nematodes, fungi, bacteria and viruses.  During the summer spores of a particular fungus cause the formation of brown Cedar-Apple Rust galls (Gymnosporangium juniperivirginianae) on Eastern Red Cedar trees. Members of the fungal family Pucciniaceae are known as rusts because the color of many is orange or reddish at some point in their life cycle.

This fungus requires two hosts, Eastern Red Cedar and primarily apples or crabapples, to complete its life cycle.  The two host trees are usually located within a mile of each other. When the Cedar-Apple Rust galls on cedar trees get wet from spring rains, orange, spore-filled fingers or horns, called telia, emerge from pores in the gall. As the horns absorb water, they become jelly-like and swollen (see inset). When the jelly dries, the spores are carried by the wind to apple trees, where they cause a brownish mottling on apples, referred to as Cedar-Apple Rust, which makes apples difficult for growers to sell, even though it doesn’t affect the flavor or texture of infected apples. The rust produces spores on the underside of apple leaves in late summer, which, if they land on Eastern Red Cedar trees, cause galls to form, thereby continuing the cycle. 

Spores produced on apple trees do not infect apple trees, only cedar; spores produced on cedar trees infect only apple trees. (Photo: Brown winter form of Cedar-Apple Rust gall & (inset) orange spring form of Cedar-Apple Rust gall. Blue “fruit” on Eastern Red Cedar branch is actually a cedar cone.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Shaggy Manes Dissolving

Shaggy Mane, Coprinus comatus, is one of a group of mushrooms known as Inky Caps. Both of these common names reflect the appearance of the mushroom at different stages of its development – the cap has white, shaggy scales, and as the mushroom matures its gills liquefy into a black substance that was once used as ink.

Most Inky Caps have gills that are very thin and very close to one another, which does not allow for easy release of the spores. In addition, the elongated shape of this mushroom does not allow for the spores to get caught in air currents as in most other mushrooms. The liquefication/self-digestion process is actually a strategy to disperse spores more efficiently. The gills liquefy from the bottom up as the spores mature. Thus the cap peels up and away, and the maturing spores are always kept in the best position for catching wind currents. This continues until the entire fruiting body has turned into black ink.

NB: WordPress has not been attaching the photograph that accompanies each post that is emailed to readers. I am working on getting it fixed, but meanwhile, if this continues, you can click on the title in the emailed version and it will take you to the Naturally Curious website, where you can see the photo. So sorry for the inconvenience.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Millipedes Migrating

We don’t often see millipedes because of their preference for secluded, moist sites where they feed on decaying vegetation and other organic matter. They are also more active at night, when the humidity is high. At this time of year, however, your chances of seeing a millipede are increased due to the fact that these invertebrates are migrating in search of overwintering sites.  Adults overwinter in nooks and crannies that provide them with some protection.  Many, like the one pictured, end up under loose bark.

Millipedes are harmless, so if you see one that accidentally found its way into your home, you can safely return it to the outdoors.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Snakes Basking & Brumating

Being ectothermic (unable to regulate their own body temperature) snakes cannot afford to spend the winter in a spot that freezes. After basking and feeding heavily in the late fall, they seek out sheltered caves, hollow logs, and burrows where they enter a state called brumation.  Brumation is to reptiles what hibernation is to mammals – an extreme slowing down of one’s metabolism.

While similar, these two states have their differences. Hibernating mammals slow their respiration down, but they still require a fair amount of oxygen present to survive.  Snakes can handle far lower oxygen demands and fluctuations than mammals.  Also, hibernating mammals sleep the entire time during their dormancy, whereas snakes have periods of activity during brumation.  If the weather is mild, they will take advantage of the opportunity to venture out and bask.  They also need to drink during this period in order to avoid dehydration. (Photo: DeKay’s Brownsnake (Storeria dekayi) basking)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


White-crowned Sparrows Migrating

White-crowned Sparrows (Zonotrichia leucophrys) breed north of New England and overwinter south of New England.  The only time we get to admire their elegant plumage is during migration, primarily in May and October. 

White-crowned Sparrows are strong migrators (A migrating White-crowned Sparrow was once tracked moving 300 miles in a single night.) but they do have to stop and refuel along the way.  Because they are now passing through New England, you may see what at first might appear to be a White-throated Sparrow, but is a White-crowned Sparrow.  Their bold black-and-white striped crowns are one quick way to tell one species from another. (Immature birds have brown and gray stripes.)  Look for them foraging in weeds along the roadside or in overgrown fields.  About 93% of their diet is plant material, 74% of which is weed seeds.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


White-tailed Deer Molting

The signs of fall are plentiful – skeins of migrating geese, disappearing insects, falling leaves.  Another transformation that takes place in the fall (as well as spring) with White-tailed Deer and other mammals is the molting of a summer coat and the growing in of a winter coat.

The thinner summer coat of a White-tailed Deer consists of shorter, reddish hair.   The shorter length of the hair allows the deer’s body heat to easily escape and the light color reflects rather than retains warmth from the sun.  Come fall, deer molt the rusty red hairs of summer, and replace them with a coat consisting of longer, darker hairs. This grayish-brown hair is warmer and absorbs more of the sun’s warmth. A spring molt occurs in reverse.

The process of molting happens relatively fast and is often completed within two to three weeks.  During this period, deer can look a bit ragged (see photo), as both the red summer hairs as well as the brown winter hairs are evident. If you see a deer at this time, it’s easy to assume that such a deer has mange, but it is just the way a seasonal molt takes place. (Photo by Erin Donahue)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Yellow-bellied Sapsucker & European Hornet Sign

Congratulations to “mariagianferrari,” who came the closest to solving the Mystery Photo when she correctly guessed that the missing bark was the result of a partnership between an insect and a Yellow-bellied Sapsucker (Sphyrapicus varius).  The sapsucker arrived first and pecked the vertical rows of rectangular holes in the trunk of the tree in order to obtain sap as well as the insects that the sap attracts.  (Usually these holes are not harmful, but a tree may die if the holes are extensive enough to girdle the trunk or stem.)

The second visitor whose sign is apparent between the sapsucker holes is the European, or Giant, Hornet (Vespa crabro).  This large (3/4″ – 1 ½ “) member of the vespid family was introduced to the U.S. about 200 years ago. Overwintering queens begin new colonies in the spring and the 200-400 workers of a colony then forage for insects including crickets, grasshoppers, large flies and caterpillars to feed to the larvae. 

In addition, the workers collect cellulose from tree bark and decaying wood to expand their paper nest, which is what has occurred between the sapsucker holes, effectively girdling the apple tree.  The nutritious sap that this collecting exposes is also consumed by the hornets. We don’t often witness this activity because most of it occurs at night.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Canada Goose Migratory Formation

“V’s” of migrating Canada Geese are a common sight and sound in the Northeast during October.  The inevitable question arises:  why fly in a V formation?  In part, because it conserves energy.  But exactly how does it do this?

As the lead goose flaps, it creates tiny vortexes (circular patterns of rotating air) swirling off its wings as well as into the space behind it.  The vortex behind a goose goes downward, while the vortexes on either side of its wings go up.  If a goose flies directly behind the goose in front of it, air will be pushing it down.  If it flies off to the outer side of the goose in front of it, air is pushing upward and the goose will get a slight lift, making flying easier.

Picture two geese flying behind and to the outer sides of the lead goose.  Additional geese, in order to avoid the vortex behind the lead goose as well as the vortexes directly behind the next two geese, will fly behind and to the outside of the wings of the two birds in front of them, getting a lift and forming a “V.” 

Because the lead goose has no vortex to get a lift from, it tires more easily than the other geese. It periodically falls back and is replaced by another goose in the formation. This cooperative process of taking turns leading the flock minimizes the need for the birds to stop and rest.  

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Bur Oak: An Uncommon Source of Acorns in the East

Oaks are generally divided into two major groups:  red oaks and white oaks.  Red oaks have bristle-tipped leaves, acorns with hairy shell linings and bitter seeds that mature in two seasons.  White oaks have leaves lacking bristles on the lobes, acorns with a smooth inner surface that are sweet or slightly bitter and mature in one season. 

Bur Oak (Quercus macrocarpa). also called Mossycup Oak, is in the white oak group and is easily identified by the corky ridges on its young branches, deeply furrowed bark and acorns with knobby-scaled caps (cupules) with a fringed edge.  This member of the beech family (Fagaceae) derived its common name from the resemblance of its heavily fringed caps to the burs on a Chestnut tree, though the caps only half cover the nut.  Common in central U.S., Bur Oak is relatively uncommon in New England, occurring in in central Maine, New Hampshire, the western edges of Massachusetts and Connecticut, and the Champlain Valley in Vermont.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Northern Leopard Frogs Migrating

Northern Leopard Frogs (Lithobates pipiens) are often found in wet, grassy meadows where they spend the summer after breeding in a body of water.  Come fall, they typically migrate towards the shoreline of a pond, traveling up to two miles in order to do so. 

Northern Leopard Frogs cannot tolerate freezing temperatures, so as it begins cooling off in October and November, these irregularly-spotted amphibians seek protection by entering the water and spending the winter months hibernating on the bottom of the pond. They are sometimes covered with a thin layer of silt, sometimes not. Usually they clear the area either side of themselves in order to facilitate respiration. Movement, if there is any, is very slow. 

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Pollen Baskets

Due to their tolerance of cold temperatures, bumblebees can still be found foraging on late-blooming flowers such as New England Asters (Symphyotrichum novae-angliae). Most worker bees collect and carry pollen in a dense mass of elongated and often branched hairs (setae) on their hind legs called a scopa.  Honeybees and bumblebees, however, have pollen baskets, or corbiculae, in which they place and carry pollen back to their hive. Pollen baskets consist of a polished cavity located on the tibia of each of their hind legs which is surrounded by a fringe of hairs. Pollen is pressed on to the pollen basket when it has been collected by the combs and brushes on the inside of the bee’s legs. The bumblebee moistens the pollen with some nectar to make it sticky and stay in the basket. The pollen is loaded at the bottom of the pollen basket, so the pollen that has been pushed towards the top is from flowers the bumblebee visited earliest on her foraging trip. When a pollen basket is full it can weigh as much as 0.01 gram and contain as much as 1,000,000 pollen grains.

Only queen bumblebees overwinter, and they must start a new colony in the spring.  When the queen first emerges you can tell whether or not she has started a nest by looking at her pollen baskets. If she is carrying pollen then she has found a nest site.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Raccoon Latrines

A reliable way to determine an animal’s diet is to examine their scat, ideally several scats over the span of a few days, in every season. This is easily done with Raccoons, as they often create communal sites called latrines where they repeatedly defecate. The pictured latrine consists of several scats containing corn, apples and grapes.

Latrines are usually found at the base of trees, in forks of trees, or on raised areas such as fallen logs, stumps, or large rocks.  Should you discover a latrine and your curiosity has you inspecting the scat contents, do so with caution.  Raccoons are the primary host of Baylisascaris procyonis, a roundworm that is the cause of a fatal nervous system disease in wild animals.  The eggs of  Baylisascaris procyonis can be harmful to people if they are swallowed or inhaled. Raccoon roundworm eggs (invisible to the naked eye) are passed in the feces of infected raccoons at the rate of 20,000 eggs per gram of feces. Although human infections are rare, they can lead to irreversible brain, heart, and sometimes eye, damage and death.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Keeping A Dead Leaf Partly Alive

If you look on the ground these days as yellow Trembling and Bigtooth Aspen leaves are falling, you may notice that small splotches of green remain in some of them.  These chlorophyll-laden patches are usually found near the bottom of the midrib of the leaf.  If you open the pocket of tissue at the base of the green section, it’s highly likely you will find a minuscule (2 mm long) translucent caterpillar (a microscope may be necessary to detect it).

The caterpillar (larva) first bores into the stem, or petiole, resulting in a swelling. When it reaches the leaf blade it makes an elongated blotch between the midrib and the first lateral vein. The larva is capable of secreting a chemical which prevents the natural deterioration of the leaf.  As a result, chlorophyll is retained in this area and photosynthesis continues to take place, providing the larva with food.  The leaf-mining larva (Ectoedemia sp.) will pupate over the winter (outside the leaf) and emerge next spring as a very tiny moth which will feed on the honeydew secreted by aphids. (Photo: Mined Bigtooth Aspen, Populus grandidentata, leaf)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.

 


Green Stain Fungus Fruiting

Sac fungi, or ascomycetes, are a group of fungi most of which possess sacs, or asci, in which spores are produced. The relatively common blue-green cup fungi, Chlorociboria aeruginascens and its close relative, Chlorociboria aeruginosa, are in this group and are referred to as Green Stain Fungi (as well as Green Elfcup or Green Wood Cup). Most of the time you do not see the actual fruiting bodies of these fungi.  More often you come across the brilliantly blue-green stained wood (often rotting logs of poplar, aspen, ash and oak) for which these fungi are responsible. Woodworkers call this wood “green rot” or “green stain.” 14th and 15th century Italian Renaissance woodworkers used Chlorociboria-infected wood to provide the green colors in their intricate wood inlays. The blue-green discoloration is caused by the production of the pigment xylindein, which may make wood less appealing to termites and has been studied for its cancer-fighting properties.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.

 

 


Yellowjacket Nests Being Raided

Because yellowjackets do not produce or store honey one might wonder why striped skunks, raccoons and black bears frequently dig up their underground nests.  It is the young yellowjackets (larvae), not honey, that is so highly prized by these insect-eating predators.  At this time of year it is crucial for them, especially black bears who go for months without eating or drinking during hibernation, to consume enough protein to survive the winter.

Whereas adult yellowjackets consume sugary sources of food such as fruit and nectar, larvae feed on insects, meat and fish masticated by the adult workers that feed them. This makes the larvae a highly desirable, protein-rich source of food. (Yellowjacket larvae reciprocate the favor of being fed by secreting a sugary material that the adults eat.)

Three to five thousand adult yellowjackets can inhabit a nest, along with ten to fifteen thousand larvae. Predators take advantage of this by raiding the nests before frost kills both the adults (except for fertilized young queens) and larvae in the fall.  Yellowjackets are most active during the day and return to their underground nest at night.  Thus, animals that raid them at night, such as raccoons, striped skunks and black bears, are usually very successful in obtaining a large meal.  Occasionally, as in this photo, the yellowjackets manage to drive off predators with their stings, leaving their nest intact, but more often than not the nest is destroyed and the inhabitants eaten.  (Thanks to Jody Crosby for photo op of yellowjacket nest (circled in red) dug up by a black bear – note size of rock unearthed.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Cottongrass

If you go to a bog at this time of year, you are apt to find a sea of white, cottony balls waving in the breezes.  These are the seed heads of Cottongrass (Eriophorum sp.), which are actually not grasses but sedges. (In contrast to grasses, which have hollow stems, the stems of most sedges are solid and triangular.) The similarity of these heads to cotton gave this plant its common name.

Cottongrass grows in acidic wetlands and bogs.  It tolerates cold weather well, and is found in the northern half of the U. S. as well as further north where it is food for migrating Caribou and Snow Geese on the tundra as well as Grizzly Bears and Ptarmigan.

The cottony seed plumes, which aid in the dispersal of Cottongrass seeds, are too short and brittle to be made into thread, but they have been used for pillow-stuffing, wound dressing and in the production of candle wicks and paper.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Dust Baths

Some species of birds “bathe” in substances other than water. Often dust or sandy soil is the material of choice, but rotten wood and weed particles are also used.  Dust baths, also called dusting or sand bathing, are part of a bird’s preening and plumage maintenance that keeps feathers in good condition. The dust that is worked into the bird’s feathers while it kicks its feet and beats its wings in the sand will absorb excess oil to help keep the feathers from becoming greasy or matted. The oil-soaked dust is then shed easily as the bird fluffs its feathers and shakes itself vigorously. Usually some feathers come out as well, and it’s often possible to determine what species of bird has taken a bath by the feathers left behind. The pictured dust bath is sprinkled with Wild Turkey feathers.  Ornithologists feel that regular dusting may also help smother or minimize lice, feather mites, and other parasites.

Hundreds of bird species have been recorded as dusters.  Those that take regular dust baths include sparrows, pheasants, turkeys, thrushes, thrashers and wrens.  (Thanks to Jody Crosby for photo op.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Chlorophyll Breaking Down

It’s as if a magic brush painted the northern New England landscape with every conceivable shade of vibrant red, orange and yellow this past week.  The major player in this phenomenon is chlorophyll, the pigment that gives leaves their green coloration during spring and summer. Chlorophyll is able to absorb from sunlight the energy that is used in transforming carbon dioxide and water to carbohydrates, such as sugars and starch, inside cell-like structures called chloroplasts, a process referred to as photosynthesis. But in the fall, because of changes in the length of daylight and changes in temperature, the leaves stop their food-making process. Chlorophyll breaks down and the green color of leaves disappears, revealing colors that have been masked by the chlorophyll all summer (as well as reds manufactured in the fall).  Imagine a world without chlorophyll, where the bright golds, purples, yellows, oranges and reds of autumn leaves would be the natural colors seen in spring, summer and fall.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.

 


Wolf’s Milk Slime Mold Fruiting

If you examine rotting logs after a rain between the months of June and November, it’s likely you eventually will find what looks like a cluster of tiny (under ¾”), pinkish puffballs growing out of the surface of one or more logs.  Although these growths resemble fungi and were at one time classified as such, they are now classified as slime molds, some of the world’s strangest organisms.  Long mistaken for fungi, slime molds are now classified as a type of amoeba.

The name of these pink balls is Wolf’s Milk Slime Mold, or Toothpaste Slime (Lycogala epipendrum).   They are one of the most frequently noticed slime molds in North America, probably due to the bright color of the young fruiting bodies (aethalia).  The common names derive from the paste-like pink substance found inside of them.  As the fruiting bodies age, both their exterior and interior turn purplish, then gray or brown (see photo inset). At maturity the paste develops into powdery grey spores.

When not fruiting, single celled individuals move about as very small, red amoeba-like organisms called plasmodia.  When certain conditions change, the plasmodia convert into the pinkish, spore-bearing structures seen this this photograph.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Bumblebees Mating

The adult male bumblebee has only one function in life and that is to mate.  However, research shows that only one out of seven males are successful in this endeavor.  When mating does take place, it is more complex than one might imagine.

In most species, the male bumblebees fly in a circuit depositing a queen-attracting scent (pheromone) from a gland in their head onto vegetation and prominent structures such as trees and rocks.  This usually takes place in the morning, and if it rains, the scent is replaced.  The males then patrol the area, with each species of bee flying at a specific height. Once a (virgin) queen has been attracted, mating takes place on the ground or vegetation, and lasts anywhere from 10 to 80 minutes.  After the male’s sperm has been deposited he inserts a genital plug in the queen which, when hardened, prevents the sperm of other males from entering her for up to three days.  (Photo by Heather Thompson: queen bumblebee with several smaller male suitors)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com  and click on the yellow “donate” button.


Cut-leaved Grape Fern Spores Maturing

There are several species of Grape Ferns in the Northeast, all of which are true ferns, but they are not closely related to the plants we generally think of as ferns. Like other ferns, Grape Ferns do not have flowers; they reproduce with spores, not seeds. A single stalk divides into two blades – one of which is sterile and does the photosynthesizing, and one of which is fertile and bears spores. It is the resemblance of this plant’s clusters of spore-bearing sporangia to miniature clusters of grapes that gives this group of ferns its name.

Cut-leaved Grape Fern, Sceptridium dissectum, is one of the most common species of Grape Ferns in the Northeast. It is often found on disturbed land, is roughly 6” to 8” tall, and has an evergreen sterile frond that appears in July, turns bronze in the fall and dies back in May.  The fertile frond has branched clusters of yellow sporangia containing spores which mature at this time of year.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com  and click on the yellow “donate” button.


Polyphemus Moth Cocoon

Congratulations to Stein, the first person to correctly identify Monday’s Mystery Photo as the cocoon of a Polyphemus Moth!

The Polyphemus Moth is one of our giant silk moths, spinners of the largest cocoons in North America.  Leaves are often woven into the surface of the cocoon in which the Polyphemus pupa spends the winter.  Unlike most other giant silk moths’ cocoons, the Polyphemus Moth cocoon lacks an escape “valve” at one end. In order to emerge (as an adult) from the cocoon the summer after it spins it, the moth secretes an enzyme that digests and softens the silk at one end. Then it moves about the cocoon in a circular pattern, tearing the softened silk with two spurs located at the base of each wing on its abdomen. Eventually it escapes by splitting the silk and pushing the top up.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com  and click on the yellow “donate” button.

 


Second Generation of Brown-hooded Owlet Moth Caterpillars Active

In the Northeast, Brown-hooded Owlet moths (Cucullia convexipennis) produce two generations a summer. The larvae of the first generation mature in July, and the second generation matures from late August into October. Brown-hooded Owlet larvae are often found on aster and goldenrod plants, resting on stems (often head down) in plain sight during the day. First generation larvae feed on the leaves and the second generation consumes the flowers of these plants. (Photo: note molted skin above caterpillar.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com  and click on the yellow “donate” button.

 


Semipalmated Plover Migration Winds Down

10-31-18 semi-palmated plover_U1A1025During the peak of their migration in the fall (August and September), Semipalmated Plover sightings occur inland but are especially concentrated along the East coast.  Sightings are decreasing now as we approach the tail end of their flight from their Arctic and sub-Arctic breeding grounds to their wintering grounds which range from the southern U.S. through southern South America.

In general, plovers (Charadriidae) are small to medium-size, plump shorebirds with long wings and short necks and rounded heads.  The Semipalmated Plover, during the breeding season, has a black crown, eye patch and single breast band.  These areas are brown in nonbreeding adults (pictured).

Fortunately, there is no evidence that the estimated breeding population of 200,000 birds is diminishing. According to the Cornell Lab of Ornithology, “The Semipalmated Plover is among the few plovers whose numbers are apparently increasing, perhaps owing to its versatility in food and habitat choice, its wide-spread coastal winter distribution, or its habitat expansion in the sub-Arctic as a result of disturbance by both humans and arctic geese.”

For those curious about this shorebird’s name, “semipalmated” in a wading bird’s name indicates that its toes are webbed for part of their length (barely detectable in photo, but if you look hard you’ll see partial webbing in the left foot).

Naturally Curious is supported by donations. If you choose to contribute, you may go to https://naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.