An online resource based on the award-winning nature guide

Galls

Blackberry Seed Gall

Galls, abnormal plants growths caused by many agents including insects, are formed during the growing season on the buds, leaves, roots and branches of plants as a response to chemicals or physical irritation. Many of these galls serve as shelters and a source of food for their developing inhabitants.

Blackberry is host to numerous gall-making insects, including mites, midges and gall wasps, and their temporary homes (galls) are most obvious in the winter. The Blackberry Seed Gall is caused by a tiny cynipid gall wasp, Diastrophus cuscutaeformis.  A cluster of small, globular, seed-like galls within which the gall wasp larvae live are pressed together in a lump surrounding the cane.  These galls derive their species name from their resemblance to dodder (Cuscuta) fruits. Each of these 1/10th-inch diameter chambers bears a spine, and together they create a reddish-brown hairy mass.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com  and click on the yellow “donate” button.


Oak Leaf Galls

 

Galls are irregular plant growths which can be stimulated by the reaction between plant hormones and powerful growth regulating chemicals produced by some insects, mites, nematodes and fungi.  Galls may occur on leaves, twigs, flowers, buds or roots.  Many plants serve as gall hosts, but certain plant groups are more attractive to gall producers than others. The Oak family is by far the most popular (with 805 species of gall makers; the next largest family being the Daisy family, with less than 200 gall makers). Galls on oaks are most often caused by small wasps or midges.

Each gall-making species of insect produces a uniquely shaped and colored gall.  Thus, it is possible to identify the insect within a gall just by noting the appearance of the gall itself as well as what plant it is on.The growth of the galls takes place in the spring. Gall-making insects lay eggs on the host plant, and the insect larva resides inside the gall that the plant forms. The galls provide the insects within them with both shelter and food. Because many oak leaves persist well into the winter, there is still the opportunity to find galls, though some may be lacking residents at this stage, as many insects emerge as adults in the fall after pupating within the galls.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Hackberry Nipple Galls

10-13-17 hackberry nipple gall 049A5957If you look on the underside of the leaves of a Common Hackberry (Celtis occidentalis) tree at this time of year, you often find light-colored, raised bumps, commonly referred to as Hackberry Nipples Galls. The creatures responsible for these growths (through chemical interactions with the leaves) are a group of small insects called jumping lice, or psyllids, which resemble miniature (1/6 “ long) cicadas, with their large eyes and wings held roof-like over their backs.

Adult Hackberry psyllids emerge in September and October from the galls they have formed and seek shelter for the winter, often in the cracks and crevices of tree bark. Because they are attracted to lights and can often fit through the mesh of window screens, these insects also seek shelter in houses. Although considered a nuisance by some, Hackberry psyllids do not sting, nor do they carry disease. They pass the winter as adults and when they break dormancy in the spring, the psyllids exit houses, tree bark fissures, etc. and lay eggs on the emerging leaves of Hackberry trees. After the eggs hatch, the young psyllids start feeding, stimulating abnormal growth in the leaves, forming small pockets, or galls, surrounding the insects. The psyllids spend the rest of the summer sucking on tree sap safely within the protective galls before exiting in the fall. As a rule, these insects do not cause serious damage to their Hackberry tree hosts.


Blueberry Stem Galls

3-29-17 blueberry stem gall IMG_7405Up to a dozen tiny black wasps (Hemadas nubilipennis) will emerge from this gall in the spring, around the time when blueberry bushes are flowering. After mating, the female wasp lays her eggs under the surface of the blueberry stems. Once she has completed her egg-laying, she climbs to the tip of the shoot and repeatedly stabs it, preventing further growth.

The plant reacts to the wasp’s egg-laying by forming a kidney-shaped gall. The majority of galls (up to 70%) are formed on stems within the leaf litter. These galls can be up to an inch in diameter, and they contain many developing larvae that feed on the walls of the gall and grow during the summer, overwinter as larvae, pupate inside the gall in the spring, and then emerge as adults when the blueberry bushes are in bloom in late May and early June. The adults are almost entirely females.

If a blueberry bush has many galls, it can be problematic.  A branch possessing a blueberry stem gall will not produce flower buds, and no flowers means no blueberries.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Witch-hazel Cone Gall Aphids Laying Eggs

10-26-16-witch-hazel-gall-s20161017_5388At this time of year there is a species of aphid, Hormaphis hamamelidis, that is laying eggs on Witch-hazel branches. Next spring female aphids will hatch out of these eggs and begin feeding on newly-emerged Witch-hazel leaves. The aphids inject the leaf with a substance that causes the leaf to form a cone-shaped growth, or gall, around the insect, providing it with both food and shelter. The galls are hollow, and have openings extending out through the leaves’ lower surfaces. Within the galls the unmated female aphids produce 50 – 70 young. Eventually the galls fill with winged female aphids which emerge through the cone openings, disperse, and repeat the process. The third generation of aphids consists of both males and females which mate and lay their eggs on Witch-hazel. The aphids that hatch from these eggs create the conical galls found on Witch-hazel leaves.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Female Sumac Gall Aphids Leaving Galls & Heading For Moss

9-22-16-red-pouch-gall-20160916_0115The sac-like galls found on Staghorn and Smooth Sumac are anywhere from marble- to ping pong ball-size, and usually become obvious in late summer when they often acquire a rosy pink blush. Inside the thin walls of these galls is one big hollow cavity, teeming with tiny orange woolly aphids (Melaphis rhois) referred to as Sumac Gall Aphids.

In the spring, female aphids lay an egg on the underside of a sumac leaf, causing the plant to form an abnormal growth, or gall, around the egg.   The egg hatches and the aphid reproduces asexually within the gall. Thus, all the aphids inside the gall are identical clones of one another. In late summer or early fall, the winged females fly to patches of moss, where they establish asexually reproducing colonies. At some point these clonal colonies produce males and females which mate and it’s these mated females that fly off to lay eggs on sumac leaves in the spring.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.


Goldenrod Ball Galls Provide Important Source of Winter Food for Downy Woodpeckers

12-11-15 goldenrod ball galls 058A number of insects cause goldenrod plants to form galls – abnormal growths that house and feed larval insects. The Goldenrod Ball Gall is caused by a fly, Eurosta solidaginis. The fly lays an egg on the stem of a Canada Goldenrod (Solidago canadensis) plant in early spring, the egg hatches and the larva burrows its way into the stem; the plant reacts by forming a gall around the larva. The larva overwinters inside the gall, pupates in late winter and emerges in early spring as an adult fly. Prior to pupating, the larva chews an exit tunnel to, but not through, the outermost layer of gall tissue. (As an adult fly it will not have chewing mouthparts so it is necessary to do this work while in the larval stage.)

Downy Woodpeckers (and Black-capped Chickadees) have discovered this abundant source of winter food, and dine on the larva after chiseling a hole into the gall. Downy Woodpeckers tend to make a tidy,narrow, conical hole by pecking, while Black-capped Chickadees tend to make a messy, large, irregular hole by grabbing bits of the gall with their bill and tugging them free. While woodpeckers prefer larger galls that are located high on goldenrod plants growing near wooded areas, these are not the only factors taken into consideration.

A woodpecker extracts the fly larva through the tunnel the larva excavates prior to pupating, as this facilitates rapid removal of the larva. Downy Woodpeckers can determine whether or not a gall has an exit tunnel, and if it doesn’t, they usually abandon the gall without drilling into it. The likelihood of smaller parasitic wasp larvae occupying the gall (and a plump fly larva not being present) is much greater if there is no exit tunnel, and these smaller prey apparently are not always worth the woodpecker’s time or energy.

NB: Correction: this week’s Mystery Photo was of a Gray Birch (Betula populifolia) bract, not a Paper, or White, Birch (Betula papyrifera) bract. While similar, there are differences between these two species of birch that I should have recognized (especially when looking at the leaf!). Thanks to Kathy, an alert blog reader, who caught this error.

Naturally Curious is supported by donations. If you choose to contribute, you may go to http://www.naturallycuriouswithmaryholland.wordpress.com and click on the yellow “donate” button.