An online resource based on the award-winning nature guide


Find more of my photographs and information similar to that which I post in this blog in my award-winning book NATURALLY CURIOUS


Blister Beetles’ Defense Mechanism

10-5 short-winged blister beetle 064Blister beetles are aptly named, for when they are disturbed they emit a yellow, oily, defensive secretion (cantharidin) from their joints which usually causes blisters when it comes in contact with skin. This toxin deters many potential predators and is especially effective against ants. According to naturalist/forester/writer Ginny Barlow, as little as 100 milligrams is reported to be fatal to humans if ingested, and this amount can be extracted from just a few beetles. Humans used to crush and dry blister beetles and use the resulting concoction for gout and arthritis. It was also used as a popular aphrodisiac known as Spanish fly. Because of its toxicity, it is no longer widely used in medicine.

Cantharidin is, however, indirectly used by tree-nesting nuthatches. With a limited number of tree cavities, there is competition among animals using them to raise their young, especially between squirrels and nuthatches. Nuthatches have been seen with Short-winged Blister Beetles (Meloe angusticollis, see photo) in their beaks, “sweeping” them on the bark around tree cavity entrances. The nuthatches don’t eat the beetles, they strictly use them as tools. It is assumed that the birds do this in order to repel squirrels with the cantharidin that is smeared on the tree. (Thanks to Ginny Barlow for photo opportunity.)

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Pigeon Tremex Horntails Laying Eggs

horntails 239Horntails, also known as wood wasps, are non-stinging, wood-eating insects that lay their eggs deep within trees. Both male and female horntails have a pointed spine at the tip of their abdomen; females also have a long, slender ovipositor. (They get their name not from their spine or ovipositor, but from a knob (cornus) at the tip of their abdomen.)

Pigeon Tremex Horntails (Tremex columba) are active in late summer and early fall. A mated female inserts her ovipositor several inches into a dead or dying tree and lays an egg (where it is safe from most, but not all, predators). Along with the egg the adult horntail deposits some white rot fungus (Daedalea unicolor) which she stores in special abdominal glands. The fungus breaks down and softens the wood for the horntail larva to eat and is required for the successful development of the horntail. The larva typically begins consuming the soft, fungus-ridden wood around it, and then chews its way to the inner bark so as to provide a means of exiting the tree when it becomes an adult. The larva then returns to feed on inner wood. It completes its metamorphosis and emerges from the tree within a year as a winged adult horntail.

There is a parasitic wasp, the Giant Ichneumon Wasp (Megarhyssa macrurus), which possesses a long three-inch ovipositor capable of drilling into trees. There are several theories as to how this parasitic wasp detects the presence of horntail larvae deep within the tree. She may lay her antennae on the outside of a tree and pick up the vibrations of horntail larvae gnawing away in their wood chambers. Another theory proposes that the female wasp uses her antennae to smell the frass (droppings) of the horntail larva as well as the wood-softening fungus. Once she locates a horntail larva, the ichneumon wasp paralyzes it and then lays an egg on it. The ichneumon wasp larva feeds on the paralyzed horntail larva, consuming it completely within a couple of weeks. The ichneumon wasp then pupates and remains dormant under the bark until the following summer, when the adult emerges.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Porcupines Foraging

10-1-15  porcupine in leaves IMG_2537There are a few weeks in September and October when acorns (and beechnuts) are mature enough to eat, but haven’t yet fallen to the ground. Porcupines take advantage of this nutritious supply of food that is not yet accessible to small rodents, deer and turkeys, and climb oak trees to consume acorns. Because an average porcupine weighs between 12 and 35 pounds, it is unable to climb all the way out to the end of a branch, where acorns are located, so it nips off the tips of fruit-bearing branches and then scoops out the acorn, leaving the cap still attached to the branch (diagnostic porcupine sign). When all the acorns on a branch have been eaten, the branch is discarded. You can often find many of these branch tips, or “nip twigs,” in the canopy of large oaks on a good mast year, but inevitably some fall to the ground. The end of the twig is usually cut at a 45° angle, and often you can see the lines made by the porcupine’s incisors. (Beechnuts are also harvested in this manner, as are the cones and terminal buds of eastern hemlock in winter.) Red squirrels also nip twigs in order to reach fruit, but typically do so when they harvest the cones and terminal buds of conifers. (Thanks to Ethel & Michael Weinberger for photo opportunity)

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Mystery Photo

10-1-15 mystery photo 078Who was here? Please respond by clicking on “Comments” on my blog. If you could refrain from googling the answer and indicating you did so, it would help retain a bit of mystery for readers commenting after you. Thank you!

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Leaf Miners

9-29 leaf miners IMG_6836A leaf miner is the larval stage of an insect (primarily moths, sawflies and flies) that feeds on leaf plant tissue. Most of these insects feed for their entire larval period within the leaf, creating tunnels between the upper and lower leaf surfaces. Some will pupate within the leaf mine, while others cut their way out when they are full-grown and pupate in the soil.

The pattern of feeding tunnels, as well as the pattern of droppings, or frass, within them (darker sections of tunnels), combined with the species of plant on which they occur, can sometimes identify the species of insect that created the mines. A moth larva, the Common Aspen Leaf Miner (Phyllocnistis populiella), leaves delicate, serpentine mines (see photo) that are diagnostic of this species.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Yellow Jackets Rebuilding Nest

yellow jacket nest2From the size of the chunks of sod that were ripped out of the ground in order to access this subterranean yellow jacket (Vespula sp.) nest, one can deduce that a black bear, not a striped skunk or raccoon, was the nocturnal visitor. Usually there is little intact nest left after a bear tears it apart in an effort to find yellow jacket larvae, but in this case, a portion of the paper nest remained. Apparently undaunted, even with frost in the air (signaling the demise of all the yellow jackets except young, fertilized overwintering queens), the workers lost no time in rebuilding their nest. Twenty-four hours after their nest was torn apart, the colony of yellow jackets had diligently chewed enough wood fiber to have replaced much of it.

Naturally Curious is supported by donations. If you choose to contribute, you may go to and click on the yellow “donate” button.

Spiderlings Dispersing

9-25 spiderlings dispersing 615Although many spider eggs hatch in the spring, there are some that hatch in the fall. Most spiderlings stay within the egg sac until they undergo their first molt – their small cast skins can be seen inside the old egg sac. After molting they emerge and cluster together, still living largely upon the remnants of yolk sac in their abdomens. In several days the spiderlings are ready to disperse, which is necessary to avoid competition for food and prevent cannibalism among the hungry siblings.

Some species, especially ground dwellers, disperse by walking, often over relatively short distances. Others, particularly foliage dwellers and many web builders, mainly disperse by ballooning. To balloon, spiderlings crawl to the top of a blade of grass, a twig or a branch, point their abdomens up in the air and release a strand of silk. Air currents catch the silk, often called gossamer, and lift the spider up and carry it off. Aerial dispersal may take a spiderling just a few feet away or much, much farther – spiderlings have been found as far as 990 miles from land. (Charles Darwin noted spiderlings landing on the rigging of the Beagle, 62 miles out to sea).


Get every new post delivered to your Inbox.

Join 3,680 other followers

%d bloggers like this: